Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Neurol Sci ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656594

RESUMO

INTRODUCTION: Anti-N-methyl-D-aspartate receptor (NMDAr) antibody encephalitis is an autoimmune disorder characterized by synaptic NMDAr current disruption and receptor hypofunction, often affecting women during pregnancy. Clinical manifestations associated with anti-NMDAr encephalitis can occur both in the mother and fetus. METHODS: We generated a systematic search of the literature to identify epidemiological, clinical, and serological data related to pregnant women with anti-NMDAr encephalitis and their children, analyzing the fetal outcomes. We examined the age and neurologic symptoms of the mothers, the presence of an underlying tumor, immunotherapies used during pregnancy, duration of the pregnancy, and type of delivery. RESULTS: Data from 41 patients were extrapolated from the included studies. Spontaneous interruption of pregnancy, premature birth, and cesarean section were reported in pregnant women with NMDAr encephalitis. Several fetal and neonatal symptoms (e.g., movement disorders, spina bifida, poor sucking, respiratory distress, cardiac arrhythmias, infections, icterus, hypoglycemia, and low birth weight) depending on the mother's serum anti-NR1 concentration were also reported. CONCLUSIONS: We characterized the outcomes of children born from mothers with anti-NMDAr encephalitis, analyzing the pivotal risk factors related to pregnancy and maternal disorder. Neuropsychiatric involvement seems strictly related to pathogenic NMDAr antibodies detected in maternal and/or neonatal serum. These findings clarify a complex condition to manage, outlining the risks associated with pregnant women with anti-NMDAr encephalitis and also providing a concrete guide for therapeutic strategies to prevent potential harm to the fetus and the child's neurodevelopment.

2.
Front Mol Neurosci ; 17: 1268013, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650658

RESUMO

The human PLAA gene encodes Phospholipase-A2-Activating-Protein (PLAA) involved in trafficking of membrane proteins. Through its PUL domain (PLAP, Ufd3p, and Lub1p), PLAA interacts with p97/VCP modulating synaptic vesicles recycling. Although few families carrying biallelic PLAA variants were reported with progressive neurodegeneration, consequences of monoallelic PLAA variants have not been elucidated. Using exome or genome sequencing we identified PLAA de-novo missense variants, affecting conserved residues within the PUL domain, in children affected with neurodevelopmental disorders (NDDs), including psychomotor regression, intellectual disability (ID) and autism spectrum disorders (ASDs). Computational and in-vitro studies of the identified variants revealed abnormal chain arrangements at C-terminal and reduced PLAA-p97/VCP interaction, respectively. These findings expand both allelic and phenotypic heterogeneity associated to PLAA-related neurological disorders, highlighting perturbed vesicle recycling as a potential disease mechanism in NDDs due to genetic defects of PLAA.

3.
Expert Rev Neurother ; 24(4): 371-381, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38433525

RESUMO

INTRODUCTION: Focal epilepsy constitutes the most common epilepsy in children, and medical treatment represents the first-line therapy in this condition. The main goal of medical treatment for children and adolescents with epilepsy is the achievement of seizure freedom or, in drug-resistant epilepsies, a significant seizure reduction, both minimizing antiseizure medications (ASM)-related adverse events, thus improving the patient's quality of life. However, up to 20-40% of pediatric epilepsies are refractory to drug treatments. New ASMs came to light in the pediatric landscape, improving the drug profile compared to that of the preexisting ones. Clinicians should consider several factors during the drug choice process, including patient and medication-specific characteristics. AREAS COVERED: This narrative review aims to summarize the latest evidence on the effectiveness and tolerability of the newest ASMs administered as monotherapy or adjunctive therapy in pediatric epilepsies with focal onset seizures, providing a practical appraisal based on the existing evidence. EXPERT OPINION: The latest ASMs have the potential to be effective in the pharmacological management of focal onset seizures in children, and treatment choice should consider several drug- and epilepsy-related factors. Future treatments should be increasingly personalized and targeted on patient-specific pathways. Future research should focus on discovering new chemical compounds and repurposing medications used for other indications.


Assuntos
Epilepsias Parciais , Epilepsia , Adolescente , Humanos , Criança , Anticonvulsivantes , Qualidade de Vida , Epilepsias Parciais/tratamento farmacológico , Convulsões/tratamento farmacológico , Epilepsia/tratamento farmacológico , Resultado do Tratamento
5.
J Clin Med ; 13(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38256507

RESUMO

In children and adolescents with epilepsy, neurodevelopmental comorbidities can impair the quality of life more than seizures. The aim of this review was to evaluate the cognitive and behavioural effects of perampanel (PER) in the paediatric population. We performed a systematic search of the literature, selecting studies published in English including children and adolescents with epilepsy treated with PER. Cognitive and behavioural outcomes were assessed through validated neuropsychological standardised scales. Eighteen studies involving 3563 paediatric patients were included. Perampanel did not impair general cognitive functions and visuospatial skills, whereas a slight improvement in verbal memory and a decline in attentional power were detected. In adolescents with refractory epilepsies, high doses and/or rapid titration of PER and an underlying psychiatric disorder were risk factors for developing or worsening psychiatric outcomes such as anger, aggressiveness, and irritability. Data on children and adolescents treated with new antiseizure medications are scant, and neuropsychiatric effects are tricky to be detected during developmental age. According to the currently available evidence, PER showed an overall favourable risk-benefit profile. Pharmacodynamics, co-administration of other antiseizure medications, and family and personal history of neuropsychiatric disorders should be considered before PER treatment.

6.
Gene ; 899: 148119, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38160741

RESUMO

BACKGROUND: The VPS13 family of proteins has been implicated in lipid transport and trafficking between endoplasmic reticulum and organelles, to maintain homeostasis of subcellular membranes. Recently, pathogenic variants in each human VPS13S gene, have been linked to distinct human neurodevelopmental or neurodegenerative disorders. Within the VPS13 family of genes, VPS13D is known to be implicated in mitochondria homeostasis and function. METHODS: We investigated a Pakistani sibship affected with neurodevelopmental impairment and severe hyperkinetic (choreoathetoid) movements. Whole exome sequencing (WES) and Sanger sequencing were performed to identify potential candidate variants segregating in the family. We described clinical phenotypes and natural history of the disease during a 3-year clinical follow-up and summarized literature data related to previously identified patients with VPS13D-related neurological disorders. RESULTS: We identified by WES an homozygous non-synonymous variant in VPS13D (c.5723 T > C; p.Ile1908Thr) as the potential underlying cause of the disease in our family. Two young siblings developed an early-onset neurological impairment characterized by global developmental delay, with impaired speech and motor milestones, associated to hyperkinetic movement disorders as well as progressive and non-progressive neurological abnormalities. CONCLUSION: In this study we delineated the heterogeneity of VPS13D-related clinical phenotypes and described a novel VPS13D homozygous variant associated with severe neurological impairment. Further studies will be pivotal to understand the exact VPS13D function and its impact on mitochondria homeostasis, brain development and regulation of movements, to further clarify genotype-phenotype correlations and provide crucial prognostic information and potential therapeutic implications.


Assuntos
Transtornos dos Movimentos , Doenças Neurodegenerativas , Transtornos do Neurodesenvolvimento , Humanos , Transtornos dos Movimentos/genética , Proteínas/genética , Homozigoto , Fenótipo , Transtornos do Neurodesenvolvimento/genética
7.
Front Neurol ; 14: 1292527, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38093754

RESUMO

Background: Hereditary spastic paraplegia (HSP) encompass a variety of neurodegenerative disorders that are characterized by progressive deterioration of walking ability and a high risk for long-term disability. The management of problems associated with HSP, such as stiffness, deformity, muscle contractures, and cramping, requires strict adherence to recommended physiotherapy activity regimes. The aim of this paper is to conduct a critical narrative review of the available evidence focusing exclusively to the therapeutic advantages associated with various forms of physical therapy (PT) in the context of HSP, emphasizing the specific benefit of every distinct approach in relation to muscle relaxation, muscle strength, spasticity reduction, improvement of weakness, enhancement of balance, posture, walking ability, and overall quality of life. Methods: To conduct a literature review, the databases PubMed, Scopus, and DOAJ (last access in June 2023) were searched. Results: The PubMed search returned a total of 230 articles, Scopus returned 218, and DOAJ returned no results. After screening, the final list included 7 papers on PT treatment for HSP patients. Conclusion: Electrostimulation, magnetotherapy, hydrotherapy, PT, robot-assisted gait training, and balance rehabilitation have the potential to increase lower extremity strength and decrease spasticity in HSP patients.

8.
Genes (Basel) ; 14(12)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38136934

RESUMO

Cardiofaciocutaneous (CFC) syndrome is one of the rarest RASopathies characterized by multiple congenital ectodermal, cardiac and craniofacial abnormalities with a mild to severe ocular, gastrointestinal and neurological involvement. It is an autosomal dominant syndrome, with complete penetrance, caused by heterozygous pathogenic variants in the genes BRAF, MAP2K1/MEK1, MAP2K2/MEK2, KRAS or, rarely, YWHAZ, all part of the RAS-MAPK pathway. This pathway is a signal transduction cascade that plays a crucial role in normal cellular processes such as cell growth, proliferation, differentiation, survival, metabolism and migration. CFC syndrome overlaps with Noonan syndrome, Costello syndrome, neurofibromatosis type 1 and Legius syndrome, therefore making the diagnosis challenging. Neurological involvement in CFC is more severe than in other RASopathies. Phenotypic variability in CFC patients is related to the specific gene affected, without a recognized genotype-phenotype correlation for distinct pathogenic variants. Currently, there is no specific treatment for CFC syndrome. Encouraging zebrafish model system studies suggested that, in the future, MEK inhibitors could be a suitable treatment of progressive phenotypes of CFC in children. A multidisciplinary care is necessary for appropriate medical management.


Assuntos
Displasia Ectodérmica , Cardiopatias Congênitas , Criança , Animais , Humanos , Prognóstico , Peixe-Zebra/genética , Displasia Ectodérmica/diagnóstico , Displasia Ectodérmica/genética , Displasia Ectodérmica/terapia , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/terapia , Cardiopatias Congênitas/diagnóstico
9.
Genes (Basel) ; 14(12)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38136965

RESUMO

Pathogenic gene variants encoding nuclear pore complex (NPC) proteins were previously implicated in the pathogenesis of steroid-resistant nephrotic syndrome (SRNS). The NUP85 gene, encoding nucleoporin, is related to a very rare form of SRNS with limited genotype-phenotype information. We identified an Italian boy affected with an SRNS associated with severe neurodevelopmental impairment characterized by microcephaly, axial hypotonia, lack of achievement of motor milestones, and refractory seizures with an associated hypsarrhythmic pattern on electroencephalography. Brain magnetic resonance imaging (MRI) showed hypoplasia of the corpus callosum and a simplified gyration of the cerebral cortex. Since the age of 3 years, the boy was followed up at our Pediatric Nephrology Department for an SRNS, with a focal segmental glomerulosclerosis at renal biopsy. The boy died 32 months after SRNS onset, and a Whole-Exome Sequencing analysis revealed a novel compound heterozygous variant in NUP85 (NM_024844.5): 611T>A (p.Val204Glu), c.1904T>G (p.Leu635Arg), inherited from the father and mother, respectively. We delineated the clinical phenotypes of NUP85-related disorders, reviewed the affected individuals so far reported in the literature, and overall expanded both the phenotypic and the molecular spectrum associated with this ultra-rare genetic condition. Our study suggests a potential occurrence of severe neurological phenotypes as part of the NUP85-related clinical spectrum and highlights an important involvement of nucleoporin in brain developmental processes and neurological function.


Assuntos
Neurônios , Podócitos , Criança , Pré-Escolar , Humanos , Masculino , Mutação , Síndrome Nefrótica/genética , Síndrome Nefrótica/patologia , Neurônios/metabolismo , Neurônios/patologia , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Podócitos/metabolismo , Podócitos/patologia
10.
Pediatr Neurol ; 149: 84-92, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37820543

RESUMO

BACKGROUND: P-21-activated kinases (PAKs) are protein serine/threonine kinases, part of the RAS/mitogen-activated protein kinase pathway. PAK1 is highly expressed in the central nervous system and crucially involved in neuronal migration and brain developmental processes. Recently, de novo heterozygous missense variants in PAK1 have been identified as an ultrarare cause of pediatric neurodevelopmental disorders. METHODS: We report a series of children affected with postnatal macrocephaly, neurodevelopmental impairment, and drug-resistant epilepsy. Repeated electroencephalographic (EEG) and video-EEG evaluations were performed over a two- to 10-year period during follow-up to delineate electroclinical histories. Genetic sequencing studies and computational evaluation of the identified variants were performed in our patient cohort. RESULTS: We identified by whole-exome sequencing three novel de novo variants in PAK1 (NM_001128620: c.427A>G, p.Met143Val; c.428T>C, p.Met143Thr; c.428T>A, p.Met143Lys) as the underlying cause of the disease in our families. The three variants affected the same highly conserved Met143 residue within the cysteine-rich inhibitor of PAK1 (CRIPaK) domain, which was identified before as a PAK1 inhibitor target. Computational studies suggested a defective autoinhibition presumably due to impaired PAK1 autoregulation as a result of the recurrent substitution. CONCLUSIONS: We delineated the electroclinical phenotypes of PAK1-related neurological disorders and highlight a novel mutational hotspot that may involve defective autoinhibition of the PAK1 protein. The three novel variants affecting the same hotspot residue within the CRIPaK domain highlight potentially impaired PAK1-CRIPaK interaction as a novel disease mechanism. These findings shed light on possible future treatments targeted at the CRIPaK domain, to modulate PAK1 activity and function.


Assuntos
Transtornos do Neurodesenvolvimento , Quinases Ativadas por p21 , Criança , Humanos , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/química , Quinases Ativadas por p21/metabolismo , Proteínas Serina-Treonina Quinases/genética , Mutação/genética , Transtornos do Neurodesenvolvimento/genética , Mutação de Sentido Incorreto
11.
Microorganisms ; 11(10)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37894207

RESUMO

Pediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcal Infections (PANDAS) syndrome is one of the most controversial diseases in pediatric rheumatology. Despite first being described more than 25 years ago as the sudden and rapid onset of obsessive-compulsive disorder (OCD) and/or tic disorder symptoms as complications of a Group A beta-hemolytic Streptococcus (GAS) infection, precise epidemiological data are still lacking, and there are no strong recommendations for its treatment. Recent advances in the comprehension of PANDAS pathophysiology are largely attributable to animal model studies and the understanding of the roles of Ca++/calmodulin-dependent protein kinase (CaM kinase) II, disrupted dopamine release in the basal ganglia, and striatal cholinergic interneurons. The diagnosis of PANDAS should be made after an exclusion process and should include prepubescent children with a sudden onset of OCD and/or a tic disorder, with a relapsing/remitting disease course, a clear temporal association between GAS infection and onset or exacerbation of symptoms, and the association with other neurological abnormalities such as motoric hyperactivity and choreiform movements. Antibiotic medications are the primary therapeutic modality. Nonetheless, there is a paucity of randomized studies and validated data, resulting in a scarcity of solid recommendations.

12.
Brain Dev ; 45(10): 588-596, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37633739

RESUMO

BACKGROUND: ATP6V1B2 (ATPase, H+ transporting, lysosomal VI subunit B, isoform 2) encodes for a subunit of a ubiquitous transmembrane lysosomal proton pump, implicated in the acidification of intracellular organelles and in several additional cellular functions. Variants in ATP6V1B2 have been related to a heterogeneous group of multisystemic disorders sometimes associated with variable neurological involvement. However, our knowledge of genotype-phenotype correlations and the neurological spectrum of ATP6V1B2-related disorders remain limited due to the few numbers of reported cases. CASE STUDY: We hereby report the case of an 18-year-old male Sicilian patient affected by a global developmental delay, skeletal abnormalities, and epileptic encephalopathy featuring Lennox-Gastaut syndrome (LGS), in which exome sequencing led to the identification of a novel de novo variant in ATP6V1B2 (NM_001693.4: c.973G > C, p.Gly325Arg). CONCLUSIONS: Our report provides new insights on the inclusion of developmental epileptic encephalopathies (DEEs) within the continuum group of ATP6V1B2-related disorders, expanding the phenotypic and molecular spectrum associated with these conditions.


Assuntos
Epilepsia Generalizada , Epilepsia , Síndrome de Lennox-Gastaut , ATPases Vacuolares Próton-Translocadoras , Masculino , Humanos , Adolescente , Síndrome de Lennox-Gastaut/genética , Epilepsia/genética , Estudos de Associação Genética , Adenosina Trifosfatases , ATPases Vacuolares Próton-Translocadoras/genética
13.
Metabolites ; 13(7)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37512517

RESUMO

The endocrine and nervous systems reciprocally interact to manage physiological individual functions and homeostasis. The nervous system modulates hormone release through the hypothalamus, the main cerebrally specialized structure of the neuroendocrine system. The hypothalamus is involved in various metabolic processes, administering hormone and neuropeptide release at different levels. This complex activity is affected by the neurons of various cerebral areas, environmental factors, peripheral organs, and mediators through feedback mechanisms. Therefore, neuroendocrine pathways play a key role in metabolic homeostasis control, and their abnormalities are associated with the development of metabolic syndrome (MetS) in children. The impaired functioning of the genes, hormones, and neuropeptides of various neuroendocrine pathways involved in several metabolic processes is related to an increased risk of dyslipidaemia, visceral obesity, insulin resistance, type 2 diabetes mellitus, and hypertension. This review examines the neuroendocrine effects on the risk of MetS in children, identifying and underlying several conditions associated with neuroendocrine pathway disruption. Neuroendocrine systems should be considered in the complex pathophysiology of MetS, and, when genetic or epigenetic mutations in "hot" pathways occur, they could be studied for new potential target therapies in severe and drug-resistant paediatric forms of MetS.

14.
Nephrology (Carlton) ; 28(7): 363-371, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37142240

RESUMO

Autoinflammatory diseases (AIDs) are mostly caused by dysfunctions in single genes encoding for proteins with a prominent role in the regulation of innate immunity, such as complement factors, inflammasome components, tumour necrosis factor (TNF)-α, and proteins belonging to type I-interferon (IFN) signalling pathways. Due to the deposition of amyloid A (AA) fibrils in the glomeruli, unprovoked inflammation in AIDs frequently affects renal health. In fact, secondary AA amyloidosis is the most common form of amyloidosis in children. It is caused by the extracellular deposition of fibrillar low-molecular weight protein subunits resulting from the degradation and accumulation of serum amyloid A (SAA) in numerous tissues and organs, primarily the kidneys. The molecular mechanisms underlying AA amyloidosis in AIDs are the elevated levels of SAA, produced by the liver in response to pro-inflammatory cytokines, and a genetic predisposition due to specific SAA isoforms. Despite the prevalence of amyloid kidney disease, non-amyloid kidney diseases may also be responsible for chronic renal damage in children with AIDs, albeit with distinct characteristics. Glomerular damage can result in various forms of glomerulonephritis with distinct histologic characteristics and a different underlying pathophysiology. This review aims to describe the potential renal implications in patients with inflammasomopathies, type-I interferonopathies, and other rare AIDs in an effort to improve the clinical course and quality of life in paediatric patients with renal involvement.


Assuntos
Amiloidose , Doenças Hereditárias Autoinflamatórias , Humanos , Criança , Qualidade de Vida , Amiloidose/etiologia , Inflamação , Proteína Amiloide A Sérica/genética , Proteína Amiloide A Sérica/metabolismo , Doenças Hereditárias Autoinflamatórias/complicações
17.
Microorganisms ; 12(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276178

RESUMO

BACKGROUND: Pediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcal Infections (PANDAS) syndrome is a rare pediatric disorder consisting of a sudden onset of obsessive-compulsive disorder (OCD) and/or tics after a group A Streptococcus (GAS) infection. METHODS: In the period between 2013 and 2023, 61 children presented to our Pediatric Rheumatology unit with a suspicion of PANDAS syndrome. Among these, a retrospective analysis was conducted, and 19 fulfilled the current classification criteria and were included in this study. RESULTS: The male-to-female ratio was 14:5, the median age at onset was 7.0 (2.0-9.5) years, and the median age at diagnosis was 8.0 (3.0-10.4) years. The median follow-up period was 16.0 (6.0-72.0) months. Family and personal history were relevant in 7/19 and 6/19 patients. Tics were present in all patients. Details for motor tics were retrospectively available in 18/19 patients, with the eyes (11/18) and neck/head (10/18) being most often involved. Vocal tics were documented in 8/19, behavioral changes in 10/19, and OCD in 2/19. Regarding the therapeutic response, all patients responded to amoxicillin, 12/13 to benzathine benzylpenicillin, and 7/9 to azithromycin. CONCLUSIONS: Our findings partially overlap with previous reports. Larger prospective studies are needed to improve treatment strategies and classification criteria.

18.
Front Pediatr ; 11: 1301166, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38161429

RESUMO

The WWOX gene encodes a 414-amino-acid protein composed of two N-terminal WW domains and a C-terminal short-chain dehydrogenase/reductase (SDR) domain. WWOX protein is highly conserved among species and mainly expressed in the cerebellum, cerebral cortex, brain stem, thyroid, hypophysis, and reproductive organs. It plays a crucial role in the biology of the central nervous system, and it is involved in neuronal development, migration, and proliferation. Biallelic pathogenic variants in WWOX have been associated with an early infantile epileptic encephalopathy known as WOREE syndrome. Both missense and null variants have been described in affected patients, leading to a reduction in protein function and stability. The most severe WOREE phenotypes have been related to biallelic null/null variants, associated with the complete loss of function of the protein. All affected patients showed brain anomalies on magnetic resonance imaging (MRI), suggesting the pivotal role of WWOX protein in brain homeostasis and developmental processes. We provided a literature review, exploring both the clinical and radiological spectrum related to WWOX pathogenic variants, described to date. We focused on neuroradiological findings to better delineate the WOREE phenotype with diagnostic and prognostic implications.

19.
Front Neurol ; 14: 1301147, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38178891

RESUMO

Prune exopolyphosphatase 1 (PRUNE1) is a short-chain phosphatase that is part of the aspartic acid-histidine-histidine (DHH) family of proteins. PRUNE1 is highly expressed in the central nervous system and is crucially involved in neurodevelopment, cytoskeletal rearrangement, cell migration, and proliferation. Recently, biallelic PRUNE1 variants have been identified in patients with neurodevelopmental disorders, hypotonia, microcephaly, variable cerebral anomalies, and other features. PRUNE1 hypomorphic mutations mainly affect the DHH1 domain, leading to an impactful decrease in enzymatic activity with a loss-of-function mechanism. In this review, we explored both the clinical and radiological spectrum related to PRUNE1 pathogenic variants described to date. Specifically, we focused on neuroradiological findings that, together with clinical phenotypes and genetic data, allow us to best characterize affected children with diagnostic and potential prognostic implications.

20.
Epilepsy Behav Rep ; 19: 100535, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35520953

RESUMO

Anti-N-methyl-D-aspartate receptor (NMDAr) antibody encephalitis is an autoimmune disorder characterized by reduced synaptic activity of the NMDAr due to circulating antibodies that target the NR1 subunit. Few cases of anti-NMDAR encephalitis during pregnancy have been described. The permeation of anti-NR1 antibodies through the placenta can be instrumental in the development of complications in newborns. We describe a case of a young woman suffering from anti-NMDAR encephalitis during the first trimester of pregnancy and focus on diagnostic and therapeutic management.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...